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Abstract: Nanostructured materials have attracted considerable interest over the last few decades to
enhance sensing capabilities thanks to their unique properties and large surface area. In particular,
noble metal nanostructures offer several advantages including high stability, non-toxicity and
excellent electrochemical behaviour. However, in recent years the great expansion of point-of-care
(POC) and wearable systems and the attempt to perform measurements in tiny spaces have also risen
the need of increasing sensors miniaturization. Fast constant potential electrodeposition techniques
have been proven to be an efficient way to obtain conformal platinum and gold nanostructured layers
on macro-electrodes. However, this technique is not effective on micro-electrodes. In this paper, we
investigate an alternative one-step deposition technique of platinum nanoflowers on micro-electrodes
by linear sweep voltammetry (LSV). The effective deposition of platinum nanoflowers with similar
properties to the ones deposited on macro-electrodes is confirmed by morphological analysis and by
the similar roughness factor (~200) and capacitance (~18 µF/mm2). The electrochemical behaviour
of the nanostructured layer is then tested in an solid-contact (SC) Li+-selective micro-electrode and
compared to the case of macro-electrodes. The sensor offers Nernstian calibration with same response
time (~15 s) and a one-order of magnitude smaller limit of detection (LOD) (2.6× 10−6) with respect
to the macro-ion-selective sensors (ISE). Finally, sensor reversibility and stability in both wet and dry
conditions is proven.

Keywords: platinum nanostructures; miniaturized electrodes; electrode nanostructuration;
solid-contact; all-solid-state ion-selective electrode; potential drift

1. Introduction

Over the last decade, nanostructured materials have been demonstrated to have exceptional
properties in the improvement of sensing performance. Thanks to their unique behaviour and increased
surface area, they can represent an effective mean to enhance sensor detection capabilities in different
ways. They can be exploited to lower the limit of detection (LOD) [1], to improve both sensitivity and
selectivity [2], to immobilize a larger quantity of bioreceptors [3] or even to change the transduction
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mechanism of the system [4]. Among them, noble metal nanostructures are emerging as functional
materials in several fields thanks to their high stability and unique physicochemical properties [5].

A part from the effort to improve sensing performance using nanomaterials, lately there has also
been a growing interest in the miniaturization of the devices for several applications. The recent wide
spread of small point-of-care (POC) devices [6], the attempt to perform measurements in tiny spaces
(like cells) [7] and the huge expansion of portable and wearable monitoring systems [8], have given a
tremendous boost in this direction. In particular, in the last few years there has been a huge effort in
the development of flexible non-invasive devices for a variety of applications [9]. The majority of the
research works have focused their attention on non-invasive monitoring using alternative body fluids,
like sweat, tears and saliva. These represents promising substitutes to blood analysis, thanks to their
accessibility and non-invasiveness and to the possibility to reproduce them artificially in the lab [8,10].
Some remarkable advances have been made in wearable sweat sensors as this fluid is readily available
and contains a huge amount of physiological information [11,12]. A discrete number of examples of
complete miniaturized and wearable systems able to measures different electrolytes and metabolites
can now be found in literature: these include sensors for the detection of glucose, lactate, ethanol
and several ions [13–19]. Miniaturized ion-sensors find applications also in other expanding fields of
application, that is on-line water quality monitoring. The development of small, cheap and sensitive
on-line sensors that can be installed across distribution networks has attracted attention to improve
water quality and reduce the risk of contamination [20]. However, sensor stability significantly lowers
during prolonged storage in wet conditions [4,21–23].

In this paper we focus on the detection of lithium ions, while the technology can easily be extended
to the monitoring of other ions. Lithium salts are still the most used mood stabilizers in psychiatric
therapies. However, these drugs have a very narrow therapeutic range, thus the blood concentration
needs to be controlled frequently to optimize the dose. Recently, a non-invasive decentralized method
for monitoring of lithium drug concentration through sweat analysis was proposed [12].

The use of nanostructures has been found to be extremely beneficial in ion-sensing. In particular,
they have been widely exploited as solid-contact (SC) in all-solid-state ion-selective sensors (ISE) to
improve stability and reduce their inherent potential drift. SC-ISEs are fabricated by depositing
an ion-selective membrane onto the solid substrate to selectively attract the ions in solution.
The favorable impact of the nanostructures on sensor stability is due to the formation of an
asymmetric capacitor as ions accumulate on the outer side of the ISM and electrons or holes are
attracted on the inner side. The interfacial potential is thus proportional to the amount of charge
in the electrical double layer, in contrast with respect to SCs based on conductive-polymers (CPs),
where the potential depends on the redox reactions occurring in the material. Nanostructured-based
SCs show some important advantages over CPs, including their hydrophobicity, large surface
area, light insensitivity and high contact capacitance and the absence of side-reactions [4,24,25].
Both carbon and noble metals nanostructures have been used in SC-ISEs: they include carbon
nanotubes [26–29], fullerene [30,31], graphene [29,32–35], polymer/carbon composites [36,37],
porous carbon [38–40], gold nanoclusters [41], gold nanodendrites [24], nanoporous gold films [42],
gold [43,44] and platinum [45] nanoparticles, platinum nanoflowers [46], combined platinum and gold
nanostructures [47].

The use of noble metal nanostructures offers several advantages with respect to carbon-based
materials, like their high stability, the non-toxicity and the possibility to use fast and conformal
electrodeposition techniques for their fabrication [46–48]. In particular, we have recently proved
that platinum nanoflowers deposited by a fast constant potential electrodeposition procedure on
macro-electrodes allow the achievement of ISEs with high detection capabilities and exceptional
stability. However, the used constant potential deposition is not effective on miniaturized
micro-fabricated electrodes. In this paper, we investigate and optimize, for the first time, an alternative
route to obtain platinum nanoflowers on micro-electrodes by means of linear sweep voltammetry
(LSV). The electrodes were fabricated at the Holst centre—IMEC (The Netherlands), while their
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nanostructuration and characterization was performed at École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland. The effective deposition of platinum nanoflowers with similar features to the
corresponding ones on macro-electrodes is confirmed by morphological analysis and by the similar
roughness factor (~200) and capacitance values (~18 µF/mm2 ). Their electrochemical properties
are then tested in a SC Li+ micro-ISE and compared to the case of macro-electrodes. The fabricated
miniaturized sensor offers Nernstian behaviour with same response time (~15 s) and a one-order of
magnitude smaller LOD (2.6× 10−6) with respect to the macro-ISEs. Finally, the great reversibility and
improved time-stability in both wet and dry conditions was proven.

2. Materials and Methods

2.1. Material

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2. Fabrication of Micro-Electrodes

Gold micro-electrodes were used for the deposition of the platinum nanoflowers. The gold
electrodes were sputter deposited and patterned on an Si substrate, which was covered with a thermal
SiO2 layer. Subsequently, a plasma-enhanced chemical vapor deposited (PECVD) SiO2 passivation
layer was deposited and patterned on the gold electrodes using contact lithography leaving only the
bond-pads and electrode area for the platinum deposition open. Finally, the wafer was diced and a
single die with the gold electrodes was mounted and wire-bonded to a printed circuit board (PCB) with
connectors. All bond-pads, wire-bonds and connector pads were covered by epoxy (Epotek H70e-2)
to shield them from the fluids during the platinum deposition and the final use of the electrodes.
The electrodes had a circular shape with a radius of 305 µm.

Platinum nanostructures were deposited by linear sweep voltammetry (LSV) in a 50 mM H2SO4,
25 mM H2PtCl6 aqueous solution using an Autolab PGSTAT 302N potentiostat with Nova software.
A three-electrodes setup was employed with a Ag/AgCl double junction as a reference electrode (RE).
Two different potential ranges were used: between 0 and –0.6 V for the procedures LSV1, between 0
and –0.8 V for LSV2.

The ion-selective membrane (ISM) was obtained by drop-casting 5 µL of a THF solution (1 wt %
(6,6–dibenzyl–1,4,8–11–tetraoxacyclotetradecane), 28.00% poly (vinyl chloride) high molecular weight,
70.3 wt % 2–nitrophenyl octyl ether and 0.7 wt %, potassium tetrakis (4–chlorophenyl)borate)) onto
the microfabricated electrodes. The solvent was allowed to evaporate overnight. The ion-selective
electrodes (ISEs) were conditioned in 10−2 M LiCl for 1 day unless otherwise stated.

2.3. Morphological Characterization

The morphology of the samples was characterized by scanning electron microscopy (SEM). A thin
iridium layer was deposited on the samples by evaporation in order to reduce surface charging due to
the glass cover. The SEM analysis was performed either with a Merlin or a Gemini 300 microscope
from Zeiss at the Interdisciplinary Centre of Electronic Microscopy (CIME) of EPFL in SE mode.

2.4. Electrochemical Characterization

Potentiometry was performed in a two-electrode setup using an EMF6 precision electrode
interface by Lawson lab. Cyclic voltammetry and current reversal chronopotentiometry analysis
were obtained with an Autolab potentiostat controlled by Nova Software in a three- and two-electrode
configuration, respectively.

An Ag/AgCl double junction RE was used in all measurements with 3 M KCl as an internal
electrolyte and a 1 M lithium acetate salt bridge.
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3. Results and Discussion

3.1. Morphological Characterization

Two different LSV procedures have been investigated in this work to achieve a fast
electrodeposition procedure of platinum nanostructures on miniaturized evaporated electrodes.
In particular, two potential windows have been used: between 0 and −0.6 V for the procedure
LSV1, between 0 and −0.8 V for LSV2. In addition, we have tested the difference in morphology
when two subsequent identical deposition methods are applied on the same electrode. The SEM
images of all resulting electrodes are shown in Figure 1. It is possible to notice that in the case of
LSV1, a smaller quantity of platinum is deposited with respect to the others (Figure 1a). In fact, as a
lower amount of material is transferred on the substrate, the architecture of platinum nanostructures
appear to be simpler and less developed, although the nanofeatures are already present. As the
potential window was extended (Figure 1c) or a double deposition was performed (Figure 1b) or
both (Figure 1d), a higher amount of platinum was deposited on the electrode and more complex
nanoflower-shaped structures were formed. No big variations in morphology were evident among
the three nanostructures. These results were confirmed by comparing the roughness factors of
the different platinum architectures, obtained as the ratio between the electrochemical active area
(calculated from the area of the platinum oxide reduction peak in CV in sulphuric acid as described
in [46]) and the geometrical area of the electrodes. Apart from LSV1 which shows a roughness
factor of about 102.9 ± 1.7, all other nanostructures obtained by LSV attained very similar values
(198.4 ± 0.3 for LSV1x2, 205.9 ± 0.1 for LSV2, 208.4 ± 1.5 for LSV2x2) to the one obtained on
macro-electrodes by constant potential electrodeposition (201.8 ± 0.7). Thus, we can conclude that,
despite the slight differences in morphology, the surface area of the different nanostructured layers
are comparable. Consequently, only the faster single-step deposition methods will be further used
for the electrochemical characterization of the SC electrodes since the more complex ones do not offer
enough advantages.

(a) LSV1 (b) LSV1x2

(c) LSV2 (d) LSV2x2

Figure 1. Scanning electron microscopy (SEM) images of platinum nanostructures deposited by linear
sweep voltammetry (LSV) with different voltage ranges: between 0 and −0.6 V for the procedures
called LSV1 (a), between 0 and −0.8 V for LSV2 (c). The comparisons with the structures obtained with
two subsequent depositions is given in (b) and (d).
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It is also important to notice that the reproducibility of all nanostructures was very good, as proved
by the standard deviation values of the roughness factors (0.3 for LSV1x2, 0.1 for LSV2, 1.5 for LSV2x2).

The following reactions can be involved in the platinum layer formation:

PtCl2−6 + 4e− −−−−→Pt(s)+ 6Cl−

or

PtCl2−6 + 2e− −−−−→PtCl2−4 + 2Cl−

PtCl2−4 + 2e− −−−−→Pt(s)+ 4Cl−

3.2. Current Reversal Chronopotentiometry (CRC) and SC Capacitance

The electrochemical behaviour of the platinum nanostructures fabricated on micro-electrodes were
tested in a Li+ ISEs. The schematic illustration of the device fabrication and the working mechanism
is given in Figure 2. Current reversal chronopotentiometry (CRC) measurements were performed
to characterize the electrochemical performance of Li+ ISEs with and without nanostructured SCs.
This technique represents a very useful way to determine the electrode capacitance and study the
stability of the electrode. The sensor potential was measured during the application of a direct current
of a few nA, that is then reversed. The typical E–t curve shows two main features: a jump as the
current is reversed and a slow potential drift at longer times [49].

(a) (b)

Figure 2. (a) A schematic illustration of the fabrication of the Li+ ion-selective sensors (ISE) based on the
one-step electrodeposition of platinum nanostructures on micro-electrodes. The working mechanism is
highlighted in (b).

The obtained curves are reported in Figure 3 in comparison with the electrodes without
nanostructured SC. It is possible to see that the potential drift is significantly lowered when the surface
area of the electrode is increased. This is a consequence of the different ion-to-electron transduction
mechanism exploited by nanostructured materials and of their hydrophobic behaviour, which reduces
the risk of water layer formation [4].

The SCs capacitance of the different electrodes can be calculated using to the following equation:
C = i

dE/dt , where i is the applied current [4] and E the measured potential. The obtained values are
reported in Table 1.
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Figure 3. Current reversal chronopotentiometry (CRC) measurements of the different fabricated Li+

ISEs on micro-electrodes: without platinum nanostructures and with platinum nanoflowers deposited
by LSV1 and LSV2.

Table 1. Potential drift and capacitance values obtained from the Current reversal chronopotentiometry
(CRC) measurements of the different fabricated Li+ ion-selective sensors (ISE) on micro-electrodes in
comparison with the literature values on macro-electrodes.

dE/dt C Normalized C
[mV/s] [µF] [µF/mm2]

Without Pt Nanostructures (micro-electrodes) 1.02 ± 0.22 0.57 ± 0.17 4.35 ± 1.29
LSV1 (micro-electrodes) 0.23 ± 0.08 2.55 ± 0.41 19.39 ± 1.29
LSV2 (micro-electrodes) 0.18 ± 0.01 2.39 ± 0.19 18.15 ± 3.09
Literature (macro-electrodes) [48] – – 15.55 ± 7.71

If we normalize the calculated capacitance by the area of the electrode, it is possible to notice
that the obtained values are very close to the ones reported in [48] for similar structures deposited
on macro-electrodes. This result confirms that the LSV procedure proposed in this work allows
the formation of platinum nanostructures on micro-electrodes, with comparable results to the ones
obtained on macro-electrodes by constant potential deposition. So, we can conclude that although
LSV1 and LSV2 have some differences in morphology, as shown in Figure 1, the SC capacitance (which
defines the stability of the electrode) is very similar. This is the most crucial property in ion-sensing as
potential drift is the main issue related to the use of ISEs, especially on miniaturized electrodes.

3.3. Lithium-ISE Calibration

Lithium-ISE were fabricated on the different SCs and calibrated between 10−7 M and 10−1 M
by subsequent additions of LiCl. The resulted time traces are reported in Figure 4. It is evident that
the presence of platinum nanostructures significantly improves the sensor response. ISE without
nanostructured SCs show enormous potential drift. As a consequence, the calibration steps are almost
invisible. On the contrary, the curves obtained with platinum nanostructured-SCs (green lines) have
clear and smooth features upon lithium addition.

From the potentiometric time traces given in Figure 4 it is possible to calibrate the sensors.
An example is given in Figure 5 for the SC with platinum nanostructures deposited by LSV2. The sensor
parameters obtained for all different micro-electrodes is given in Table 2 in comparison with the values
reported in literature for macro-electrodes. From these results it is possible to conclude that all sensors
offer Nernstian behaviour and short response time. In addition, the miniaturization of the electrodes
reduced the LOD by half a order of magnitude with respect to the macro-electrodes in the case of
LSV1 deposition. In the case of LSV2 deposition, the improvement in the LOD was even higher (one
order of magnitude), while the standard deviation was significantly reduced (almost a half-order of
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magnitude). This can be explained by considering the higher surface area of these nanostructures,
as discussed previously.

The membrane selectivity have already been investigated in [48]. It was proved to be very similar
to the values of liquid junction ISEs.

Figure 4. Calibration time traces of lithium-ISE fabricated on different solid-contact (SC). LiCl was
added every 50 s to achieve a half-log increase of the concentration.

Figure 5. Calibration curve of lithium SC-ISE with platinum nanostructures deposited by LSV2.

Table 2. Sensor parameters obtained from the calibration curves of the different fabricated Li+ ISEs
on micro-electrodes in comparison with the literature values on macro-electrodes. (Calibration range
between 10−7 M and 10−1 M.)

Slope [mV/decade] LOD Response Time [s]

LSV1 (micro-electrodes) 61.7 ± 3.7 (4.4± 3.9)× 10−6 15–30
LSV2 (micro-electrodes) 59.0 ± 1.0 (2.6± 0.5)× 10−6 15–30
Literature (macro-electrodes) [48] 58.7 ± 0.8 (13.0± 4.0)× 10−6 15–30

3.4. Reversibility and Lifetime Studies

Sensors reversibility was proved by performing a forward and backward calibration between
10−3 and 10−1 M, which is the range of interest in clinical applications for sweat analysis. A typical
response for a SC-ISE obtained by LSV2 deposition of platinum nanostructures is given in Figure 6.
It is evident that the device offers a stable and reversible response in the detection range.
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Figure 6. Reversed calibration between 10−3 and 10−1 M of for a Li+ SC-ISE on micro-electrodes.
Platinum nanoflowers were deposited by LSV2.

Another important parameter in ion-sensing is the lifetime of the electrodes. In particular, it has
been found in many articles [4,21–23] that the sensor performance significantly lowers when the sensor
is kept in solution for a long period of time. Figure 7 shows the comparison among calibration traces
obtained from the freshly prepared sample and the ones after 40 days of storage in dry or in wet
conditions between 10−7 M and 10−1 M. A 10−2 M LiCl was used for wet storage. It is possible to
notice that the sensor response remains almost the same, with smooth and sharp steps and Nernstian
response in all cases (Table 3). Also, after 40 days of storage in solution, the sensor slopes and LOD
decreased by less then 5%. This property is crucial in on-line applications where continuous exposure
to wet conditions is needed.

Figure 7. Calibration traces obtained from the freshly prepared Li+ SC-ISE (green) and the ones after 40
days of storage in dry (light blue) and then in wet (dark blue) conditions. Platinum nanoflowers
were deposited by LSV2. LiCl solution was added every 50 s to achieve a half-log increase of
the concentration.

Table 3. Sensor parameters obtained from the calibration traces in Figure 7 for the freshly prepared
Li+ SC-ISE and the ones after 40 days of storage in dry and then in wet conditions. (Calibration range
between 10−7 M and 10−1 M.)

Slope [mV/decade] LOD Response Time [s]

As prepared 59.1 2.7× 10−6 ~15 s
After 40 days in dry 59.0 2.7× 10−6 15–20
After 40 days in wet 56.5 2.8× 10−6 15–40
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4. Conclusions

Platinum nanostructures have been found to have exceptional properties in sensing applications,
especially for ion-selective electrodes. However, the classical deposition by applying constant
potential is not suitable for miniaturized evaporated electrodes. In this paper, we developed a simple
and efficient electrodeposition procedure for miniaturized electrodes based on LSV. Two potential
windows and successive depositions are investigated and compared. Single-step procedures produce
similar morphological features while allowing a simpler fabrication protocol. Although the two LSV
depositions produce differently shaped platinum nanoflowers, when used to fabricated a SC-ISE,
their electrochemical behaviour is very similar. The capacitance values of the two structures obtained
by CRC measurements is almost equal. Furthermore, the value is very close to the one reported in
literature for platinum nanostructures on macro-electrodes, which is a highly notable result. All sensors
show short response time (∼15 s) and Nernstian calibration with one-order of magnitude lower
detection limit (2.6× 10−6) with respect to the micro-electrodes values. Finally, sensor reversibility
and stability both in wet and dry conditions are also confirmed.
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Abbreviations

The following abbreviations are used in this manuscript:

CRC current reversal chronopotentiometry
CP conductive polymer
CV cyclic voltammetry
ISE ion-selective electrode
ISM ion-selective membrane
LOD limit of detection
LSV linear sweep voltammetry
POC point-of-care
RE reference electrode
SC solid contact
SEM scanning electron microscopy
WE working electrode
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45. Paczosa-Bator, B.; Cabaj, L.; Piech, R.; Skupień, K. Potentiometric sensors with carbon black supporting
platinum nanoparticles. Anal. Chem. 2013, 85, 10255–10261. doi:10.1021/ac402885y. [CrossRef]

https://doi.org/10.1021/ac071156l
http://dx.doi.org/10.1021/ac071156l
https://doi.org/10.1039/c3an00313b
http://dx.doi.org/10.1039/c3an00313b
http://www.ncbi.nlm.nih.gov/pubmed/23515323
https://doi.org/10.1021/acsami.7b07346
http://dx.doi.org/10.1021/acsami.7b07346
https://doi.org/10.1016/j.aca.2014.10.033
http://dx.doi.org/10.1016/j.aca.2014.10.033
https://doi.org/10.1016/j.aca.2015.03.038
http://dx.doi.org/10.1016/j.aca.2015.03.038
http://www.ncbi.nlm.nih.gov/pubmed/25998457
https://doi.org/10.1039/b719759d
http://dx.doi.org/10.1039/b719759d
https://doi.org/10.1039/C1AN15705A
http://dx.doi.org/10.1039/C1AN15705A
https://doi.org/10.1021/jp306234u
http://dx.doi.org/10.1021/jp306234u
https://doi.org/10.1016/j.elecom.2011.10.018
http://dx.doi.org/10.1016/j.elecom.2011.10.018
https://doi.org/10.1021/ac203480z
http://dx.doi.org/10.1021/ac203480z
https://doi.org/10.1016/j.snb.2015.10.054
http://dx.doi.org/10.1016/j.snb.2015.10.054
https://doi.org/10.1080/00032719.2015.1045594
http://dx.doi.org/10.1080/00032719.2015.1045594
https://doi.org/10.1021/ac3011507
http://dx.doi.org/10.1021/ac3011507
http://www.ncbi.nlm.nih.gov/pubmed/22901027
https://doi.org/10.1021/ac070132b
http://dx.doi.org/10.1021/ac070132b
http://www.ncbi.nlm.nih.gov/pubmed/17508716
https://doi.org/10.1016/j.elecom.2014.10.014
http://dx.doi.org/10.1016/j.elecom.2014.10.014
https://doi.org/10.1016/j.electacta.2016.11.069
http://dx.doi.org/10.1016/j.electacta.2016.11.069
https://doi.org/10.1021/ac5029209
http://dx.doi.org/10.1021/ac5029209
https://doi.org/10.1016/j.talanta.2011.07.049
http://dx.doi.org/10.1016/j.talanta.2011.07.049
https://doi.org/10.1016/j.electacta.2015.01.143
http://dx.doi.org/10.1016/j.electacta.2015.01.143
https://doi.org/10.1021/ac402885y
http://dx.doi.org/10.1021/ac402885y


Sensors 2019, 19, 2260 12 of 12

46. Taurino, I.; Sanzó, G.; Mazzei, F.; Favero, G.; De Micheli, G.; Carrara, S. Fast synthesis of platinum nanopetals
and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions.
Sci. Rep. 2015, 5, 15277. doi:10.1038/srep15277. [CrossRef]

47. Criscuolo, F.; Lobello, L.; Taurino, I.; Demarchi, D.; Carrara, S.; Micheli, G.D. Mixed gold and platinum
nanostructured layers for all-solid-state ion sensors. In Proceedings of the IEEE Sensors Conference,
New Delhi, India, 28–31 October 2018.

48. Criscuolo, F.; Taurino, I.; Stradolini, F.; Carrara, S.; De Micheli, G. Highly-stable Li + ion-selective electrode
based on noble metal nanostructures as solid-contacts. Anal. Chim. Acta 2018, 1027, 22–32. [CrossRef]
[PubMed]

49. Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as
Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. doi:10.1021/ac990497z. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1038/srep15277
http://dx.doi.org/10.1038/srep15277
http://dx.doi.org/10.1016/j.aca.2018.04.062
http://www.ncbi.nlm.nih.gov/pubmed/29866266
https://doi.org/10.1021/ac990497z
http://dx.doi.org/10.1021/ac990497z
http://www.ncbi.nlm.nih.gov/pubmed/21662838
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Material
	Fabrication of Micro-Electrodes
	Morphological Characterization
	Electrochemical Characterization

	Results and Discussion
	Morphological Characterization
	Current Reversal Chronopotentiometry (CRC) and SC Capacitance
	Lithium-ISE Calibration
	Reversibility and Lifetime Studies

	Conclusions
	References

